Examination of Initialization and Geometric Details on the Results of Cfd Simulations of Diesel Engines
نویسندگان
چکیده
Computational Fluid Dynamic (CFD) simulations using the AVL Fire and Kiva 3v codes were performed to examine commonly accepted techniques and assumptions used when simulating direct injection diesel engines. Simulations of a steady state impulse swirl meter validated the commonly used practice of evaluating the swirl ratio of diesel engines by integrating the valve flow and torque history over discrete valve lift values [1]. The results indicate the simulations capture the complex interactions occurring in the ports, cylinder and honeycomb cell impulse swirl meter. The commonly adopted axisymmetric assumption for an engine with a centrally located injector was tested by comparing the swirl and emissions history for a motored case and a double injection low temperature combustion case. Consideration of the detailed engine geometry including valve recesses in the piston and the head lowered the peak swirl ratio at TDC by approximately 10% compared to the simplified no-recess case. The corresponding combusting cases also had different heat release and emissions predictions but could be partially compensated for by lowering the initial swirl ratio for the axisymmetric case.
منابع مشابه
Combustion Modeling for Modern Direct Injection Diesel Engines
In order to comply with stringent pollutant emissions regulations, a detailed analysis of the engine combustion and emission is required. In this field, computational tools like CFD and engine cycle simulation play a fundamental role. Therefore, the goal of the present work is to simulate a high speed DI diesel engine and study the combustion and major diesel engine emissions with more deta...
متن کاملMulti-Dimensional Modeling of the Effects of Split Injection Scheme on Combustion and Emissions of Direct-Injection Diesel Engines at Full Load State
One of the important problems in reducing pollutant emission from diesel engines is trade-off between soot and NOx. Split injection is one of the most powerful tools that decrease soot and NOx emissions simultaneously. At the present work, the effect of split injection on the combustion process and emissions of a direct-injection diesel engine under full-load conditions is investigated by the c...
متن کاملNumerical study of the effect of fuel injection timing on the ignition delay, performance parameters and exhaust emission of gas/dual fuel diesel engine using Computational Fluid Dynamics
Today, due to the various usage of compression ignition engines in urban transportation, as well as the need to reduce exhaust emissions and control fuel consumption, the use of alternative fuels has become common in diesel engines. Gaseous fuel is one of the most common alternative fuels that can be used in diesel engines. The utilization of alternative fuels in compression ignition engines re...
متن کاملEFFECTS OF INLET PORT DESIGN FACTORS ON COMBUSTION CHARACTERISTICS AND EMISSION LEVELS OF DIESEL ENGINES
Intake system design as well as inlet ports and valves configuration is of paramount importance in the optimal performance of internal combustion engines. In the present study, the effect of inlet ports design is investigated on OM-457LA diesel engine by using a CFD analysis and the AVL-Fire code as well. A thermodynamic model of the whole engine equipped with a turbocharger and an intercooler ...
متن کاملSimulation of Dual Fuel Combustion of Direct Injection Engine with Variable Natural Gas Premixed Ratio
Nowadays, the major challenge of diesel engines development is simultaneous nitrogen oxides and soot emissions reduction without the thermal efficiency drop. Hence, different combustion concepts should be investigated to reach optimum emission and performance conditions in diesel engines without expensive aftertreatment systems. This paper presents the results of a study on a dual fuel (DF) eng...
متن کامل